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I INTRODUCTION

In this paper we determine the nonnegativity structure of the principle com-
ponents of an n x n nonnegative matrix P in terms of the marked reduced
graph "Z(A) of the associated minus M-matrix A = P- p(P)I. We then ap-
ply this result to obtain a characterization for when the eigenprojection on
the generalized eigenspace corresponding to the Perron root (subsequently
called the Perron eigenspace of P or A) is itself a nonnegative matrix.
We also apply this result to obtain new proofs and extensions of results
of Hartwig, Neumann, and Rose [3] and Friedland and Schneider [5]

It is well known that the Perron eigenspace of P has a basis of nonneg-
ative vectors with many specified properties, see Rothblum [11], Richman
and Schneider [10], Schneider [12], and lHershkowitz and Schneider [6]. The
approach taken in these papers is matrix combinatorial and uses the Frobe-
nius normal form. More recently the authors of [3] gave an analytic proof
for the existence of a nonnegative basis. They found a nonnegative matrix
J which turns out to be a polynomial in P and whose columns contain a
basis for the Perron eigenspace of P. This suggests that the two approaches
are related. In this paper the relation is investigated.

We now describe the contents of the paper in more detail. Section 2 con-
tains most of the notions which we use in the paper. In Section 3 we prove
our first main result (Theorem 1): Let P be an n x n nonnegative matrix in
Frobenius normal form and let Z(k) be the k-th principal component. Let i
and j be vertices in RZ(A) and let d = d(i,j) be the (singular) distance from
i to j. Then the (ij)-th block of Z(k) is strictly positive if d = k + 1. We
mention that according to Lemma 2(i), the (ij)-th block of Z(k) is zero if
d < k + 1. The results of [3] are a corollary of this result. Another outcome
of this result is that a nonnegative basis can be extracted from the columns
of J which is strongly combinatorial in the sense defined in Section 2.

In Section 4 we characterize when the eigenprojection Z = Z(°) on the
Perron eigenspace of P is itself a nonnegative matrix. We begin by showing
that a necessary condition for this to happen is that in 'R(A) no nonsingular !on For
vertex lies on the interior of a simple path connecting two singular vertices. jA z r

This leads to our characterization (cf. Theorem 2) for Z to be nonnega- I
tive in terms of the existence of special nonnegative bases for the Perron ced Q3

eigenspaces of A and AT which are bi-orthogonal and whose distinguishing itio.
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feature, compared with other types of nonnegative bases which the Perron
eigenspaces of these matrices possess, is their comparative sparseness.

In Section 5, using Theorem 1, we re-prove results contained in [5] on
the asymptotic behavior of the powers of P. In the special case when all
the vertices in RZ(A) come from primitive diagonal blocks in the Frobenius
normal form of P, lie result asserts that (Pm)ij, behaves asymptotically as

7 mdsmZ S-)(P{i .i}), where -y is a positive constant, 6 = 6(i,j) is the local
distance between from i to j, s is the local spectral radius of P{i,j}, the
principal submatri;, of P index by all vertices I which lie on a path from
i to j in R(P), and Z!"6 (P{fi,j}) is the (6 - 1)-th principal component
of P{i,j} correspondiu,; to the eigenvalue s. In the general case, without
any primitivity assumption, we consider the sequence MPm, where M is a
smoothing matrix which is a polynomial in P.

In this introduction we have described our results in terms of the non-
negative matrix P. In Sections 2-4 it will be convenient to state our result
in terms of the associated minus M-matrix A given above.
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2 NOTATIONS AND PRELIMINARIES

For a positive integer n we denote by (n) the set {1,...,n}.

For an n x n matrix A we denote by:

N(A) - the nullspace of A.

E(A) - the generalized nullspace of A, viz. 4/(An).

v(A) - the index of 0 as an eigenvalue of A, viz. the size of the largest
Jordan block associated with 0.

Let a C (n). By A[a] we shall denote the principal submatrix of A
whose rows and columns are determined by a. Similarly, for an n-vector
x, we shall denote by x[a] the subvector of x whose entries are indexed by
a. For an array C we shall use C > 0 to denote when all its entries are
nonnegative numbers. C > 0 shall denote the fact that C > 0, but C ? 0.
C > 0 shall denote the fact that all of the entries of C are positive numbers.

In all our considerations we shall assume that A is an n x n real matrix
given in a block lower triangular form with p square diagonal blocks as
follows 0 00

A 2,1 A2,2  0 (2.1)

I Ap,. ... Ap,p

where each diagonal block is irreducible or the 1 x 1 null matrix. The above
form is the so called Frobenius normal form of A. It is well known that
any square matrix is symmetrically permutable to such a form. The reduced
graph of A, 'R(A), is defined to be the graph with vertices 1,...,p, where
(ij) is an arc from i to j if Aij 0. A vertex i in R(A) is said to be
singular if Ai,i is singular. Otherwise the vertex is called nonsingular. The
set of all singular vertices in R(A) will be denoted by S(A). A scy.cnce of
vertices (i,..., ik) in '(A) is said to be a path from il to ik. if there is an
arc in R-(A) from ij to ij+1, Vj E (k - 1). The path is said to be simple
if ii... , ik are distinct. The empty path will be considered a simple path
linking every vertex i E VZ(A) to itself. If there is a path (in I(A)) from i
to j we shall write that i - j. If i 0 j and there is a path from i to j we
shall write that i >- j. If there is a path from i to j define the (singular)
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distance d(i,j) from i to j to be the maximal number of singular vertices
on a simple path connecting i and j. If there is no path from i to j we set
d(i,j) = -1. In particular it follows from our definition that d(i, i) = 0 if i
is a nonsingular vertex and d(i, i) = 1 if i is a singular one. Note that each
vertex i E 7Z(A) can be thought of a subset of (n) which consists of those
elements in (n) upon which the i-th diagonal block in A is indexed.

If 0 is an eigenvalue of A, then in a punctured neighborhood of 0 which
contains no other eigenvalues of A, the resolvent operator (cl - A)- 1 admits
the Laurent expansion

v(A)-i AkZ
(l- A)- 1  E Z k+i + T(c), (2.2)

k=O

where ZA is the eigenprojection of A on E(A) (that is, the projection
on E(A) along the join of all eigenspaces of A corresponding to eigenval-
ues other than zero) and where T(c) is an analytic operator in E defined
throughout the nonpunctured neighborhood of 0 satisfying T(0) = 0 and
ZAT(c) = T(c)ZAi = 0 (cf. Kato [8, pp.3,1-43]). We call the matrices
Z(k) := AkZ, k = 0, 1, v(A) - 1, the principal components of A (cor-
responding to the eigenvalue 0). Recall, e.g. Lancaster and Tismenetsky
[9], that all principal components of A are functions of A and hence also
polynomials in A. Note, however, that the principal components as defined
here differ by factorial multiples from those introduced in Lancaster and
Tismenetsky (see [9, p.314]).

Consider 7Z(A). We shall let

(i,j) = {I E R(A) : i >- l >- j}

and we shall let A {i, j} = A[(i, j)]. The following lemma is readily obtained:

LEMMA 1 For every polynomial B = q(A) we have that B[(i,j)] = q(A{i,j}).
In particular, as all the principal components of A are polynomials in A,
Z(k)[(i'j)] = ((A){i,j})kZA(15,).

Proof: Partition B = q(A) in conformity with A and compute B[(i,j)]
from the powers of A which appear in q(A). 0
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Let P be an n x n nonnegative matrix. The Perron Frobenius theory
(cf. Berman and Plemmons [1]) tells us that the spectral radius of P, given
by the quantity

p(P) = max{IAI det(P - Al) = 0}

is an eigenvalue of P to which there corresponds a nonnegative eigenvector.
In particular, if P is irreducible, then p(P) is simple and the corresponding
eigenvector is, up to a multiple by a scalar, positive. The matrix A =
P - p(P)I, which has all its off-diagonal entries nonnegative, is the n x n
minus M-matrix which we associate with P and, in several sections of our
paper, it will be convenient to work with A rather than with P. (We call A a
minus M-ratrix if -A is an M-matrix. For the many equivahco- conditions
for a real matrix with nonpositive off-diagonal entries to be an i-matrix
see Berman and Plemmons [1, Chp.6].) Suppose now that m = dim(E(A)).
It is known that m is equal to the number of singular vertices in R(A), e.g.,
Cooper [2]. Rothblum [11] has shown that v(A) is equal to the maximum
over all lengths of the simple paths in 'R(A), a result to which we shall
refer as the Rothblum index theorem. Let S(A) = {ai, .. . ,am}. Rothblum
[11] and, independently, Richman and Schneider [10] have shown that E(A)
possess a basis of nonnegative vectors u(),... ,u(m) having the following
properties:

- > 0, iff i ,(2.3)u(j)[i] = 0, otherwise.

We shall call a nonnegative basis for E(A) satisfying (2.3) strongly combi-
natorial.

Let A be a minus M-matrix given in the form (2.1). Then AT is now
a minus M-matrix in upper triangular Frobenius normal form. If we were
to introduce formally the concept of the reduced graph for matrices in up-
per triangular form, we would observe that in going from A to AT, the
direction of the access between the vertices is reversed. In any event, by
possibly transforming AT to a lower triangular form via similarity permu-
tations, it follows, on applying the aforementioned results for nonnegative
bases for matrices in lower triangular Frobenius normal form, that E(AT)
has a nonnegative basis of vectors v(),..., v(m) such that for i E (p) and
jE (m),

vU)[i] = > 0, iffin RZ(A), aj i,
0, otherwise.



Motivated by this observation and by Hershkowitz and Schneider [6] we now
introduce the notions of column and row proper combinatorial bases.

DEFINITION 1 Let A be the n X n minus Al-matrix given in (2.1) and
consider 2Z(A). A nonnegative basis u(),. .. , u(m) is called a proper column
combinatorial basis for E(A) if

u(')[i] > 0 #. i. aj

and
UW[C j] > 0

for all i E (p) and j E (m). Similarly, a nonnegative basis v),..., V(m) for
E(AT) is ,.au 2 , proper row combinatorial basis for E(AT) if

v()[i] > 0 = a1 L i

and
vU)[Cr1] > 0,

for all i E (p) and j E (m).

We end this section with the following observation which will be useful
for our results in the next sections:

LEMMA 2 Let A be as in (2.1) and let i and j be vertices in R(A).

(i) For all k > d(i,j), Zfk) = 0.

(ii) If, in addition, A is a minus singular M-matrix, then Z(k-1){i,j} >
0.

Proof: (i) By the result in Friedland and Hershkowitz [4] and Her-
shkowitz, Rothblum, and Schneider [7] the index of A{i,j} does not exceed
k. Hence, by Lemma 1, Z(k)[{i,j}] = 0 and the result follows.

(ii) This is an consequence from the resolvent expansion of A{i,j} in
a sufficiently small punctured neighborhood of 0 considering that the fact
that (cl- A{i,j}) - l > 0, Vc > 0. o
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3 PRINCIPAL COMPONENTS

We mentioned in the introduction that the first approach to the questions of
existence of a nonnegative basis to the Perron eigenspace of a nonnegative
matrix P and the properties of such a basis were matrix combinatorialin the
sense that they were based on the Frobenius normal form. This approach
was developed by Rothblum [11] and Richman and Schneider [10]. A later
approach to these questions, obtained by IHartwig, Neumann, and Rose [3],
is analytic in the sense that it utilizes the resolvent expansion, but does not
involve the Frobenius normal form. In [3] the authors show that if Zp-p(p),
is the eigenprojection on the Perron eigenspace of P, then for A - p(P) > 0
sufficiently small, the matrix

J = (Al- P)-Zpp(p)I (3.1)

is nonnegative and its columns contain a basis for the Perron eigenspace. We
now observe that if P is in lower block triangular Frobenius normal form,
then since J is a polynomial in P, J is also a block lbwer triangular matrix
whose partitioning conforms with that of P. This suggests that there is a
connection between the combinatorial and the analytic approaches to the
existence of a nonnegative basis described above. In this section we shall
make the connection more precise. It will be convenient for us to work and
state our results in terms of the associated minus M-matrix A = P - p(P)I.

Our first main result is the following:

THEOREM 1 Let A be a minus Al-matrix in Frobenius normal form given
by (2.1) and set Z = ZA. Suppose ij E 7%(A). If d(ij) = k > 1, then

! > 0.

Proof: The theorem is proved by induction on number of blocks p in
the Frobenius normal form.

Let p = 1. Then i = j = 1. If 1 is a nonsingular node, then d(1, 1) = 0
and hence of no interest. If 1 is a singular node, then d(1, 1) = 1 and, as is
well known, Z(°) > 0. This proves the case p = 1.

Assume now that the result is true for all minus M-matrices with fewer
than p blocks in their Frobenius normal form and suppose that A is a minus
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M-matrix with p blocks in its normal form. Let ij E RZ(A) be such that
d(ij) = k > 1. We need to distinguish four cases.

Case 1. i and j are nonsingular vertices.

(a) Since d(ij) = k there exists a simple path from i to j containing k
singular vertices. Let (i, m) be the first arc in this path so that Ai,m > 0.
Then d(m,j) = k. Thus, by our inductive assumption and Lemma 2 applied

to A{m, j}, we have that Z(k7 1) > 0. Furthermore, again by Lemma 2, since

the index of A{i,j} is k, Z(k-1)[(ij)] > 0 and Z(k)[(i,j)] = 0. Now as
oAt, &'1 +... Z + ( . ... + Ai iZ!71' (3.2)

tok) idm I' 1) 9

and as every term in this sum except for the lat one is nonne-ative with at
least one of the terms being semipositive, it follows that

- Ai,iZ!1- ') > 0. (3.3)

But -Aid is a nonsingular and irreducible M-matrix and so its inverse is

strictly positive. It follows that Z!K1 ) > 0 and that each of its columns is
either strictly positive or zero.

(b) Let (l,j) be the last arc in a path from i to j which contains k
singular vertices. As in part (a) we obtain that Al,i > 0 and it follows by

our inductive assumption that Z(, - 1) > 0. As before, from
i,1

o -)z = Z~1 l A1,; + ... + z4?')A,,1  + ... + (,j)Aij, (3.4)

it follows that
- z',--'A,J > 0. (3.5)

By an argument similar to the one following (1.3) it follows ti'. tZ!, -1) > 0
:13

and that each of its rows is either zero or positive.

Combining the results of (a) and (b) we obtain that Z!,' 1) > 0.

Case 2. i . a nonsingular vertex and j is a singular one.

(a) As in Case 1 we choose a simple path from i to j containing k singular
vertices. By the argument of Case 1(a), which did not use the nonsingular-

(k)
ity of the vertex j we prove that Z(, ) > 0 and each of its columns is either
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positive or zero.

(b) Choose I as in Case 1(b). Since d(l, i) = k - 1 it follows from
our inductive assumptions and Lemma 2 that Z(k-1)[(l, i)] = 0 and that
Z4,) = 0. Hence

Z() (3.6)

Thus each row of Zf,.-' ) is a left null vector of the irreducible M-matrix
-A, 1 and hence is either positive or zero.

Combining the results of (a) and (b) we obtain that Zf,- ) )> 0.

Case 3. i is a singular vertex and j is a nonsingular one.

The proof of this case is similar to the proof of Case 2 with the roles of
the vertices i and j reversed.

Case 4. i and j are singular vertices.

Observe that by Lemma 2 the trailing principal submatrix of Z(k-1)[(i, j)I
obtained by deleting the first block row and the first block column of
Z(k- 1 )[(i,j)] is zero. A similar argument shows that the leading principal
submatrix of Z(k-1)[(i,j)] obtained by deleting the last block row and the
last block column of Z(k-1)[(i,j)] is zero. Hence all the blocks of Z(k-1)[(i,j)]
with the possible exception of Zf,7-1 ) are zero. However, Z(k-1)[(i,j)] 0 0,

so that by Lemma 2(ii) we must have that z~'y- ) > 0. Repeating the proof

of Case 2(b) we obtain that each row of Zj 1) is either positive or zero.
Similarly, by reversing ,he roles of i and j in this proof, we obtain that each
column of -') is either positive or zero. Together these conclusions give

that Z(*- 1 ) > 0. 0..

Theorem 1 has the immediate consequence that on choosing c = A -
p(P) > 0 sufficiently small, the nonnegative basis for E(A), A = P - p(P)I,
which can be extracted from the columns of the matrix J in (3.1) is a
combinatorial basis. To see this note that from (2.2) and (3.1) it follows
that v,(A)1 Z(k,)

J -- Z (3.7)

k=O
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and recall that as A is in lower triangular Frobenius normal form, J itself
is lower triangular. The nonzero diagonal blocks of J are positive and oc-
cur, precisely, in position, corresponding to the singular blocks of A. The
remaining diagonal blocks of J are zero. Now from each block column of
J containing a positive diagonal block of J select a column of J. Clearly
the m columns thus selected are linearly independent and form a basis for
E(A) which, by Theorem 1 and simple asymptotic consideration, satisfies
the requirements of (2.3) for being a combinatorial basis.

Continuing, we mention that both Rothblum [11] and Richman and
Schneider [10 show that nonnegative bases for E(A) can be selected possess-
ing stronger properties than just (2.3). In particular, Richman and Schneider
show that E(A) has a so called preferred basis which is a set of nonnegative
vectors u(I),..., u(m) which forms a basis for E(A) satisfying (2.3) with the
added stipulation that

Au(k) Ck-jl(j),
j=O

where the ck,J's are scalars satisfying

= >0, ifa '-ak, (3.8)0, otherwise.

Thus, in view of the foregoing paragraph, it should be noted that one can
find examples such that, even for c > 0 sufficiently small in (3.7), a basis
extracted from the columns of J cannot be a preferred basis as the following
example shows: Let

00 0
A= 1 0 0

0 10

As dim(E(A)) = 3, we know that the three columns of J form a basis for
E(A). Let Jil, i = 1, 2,3, denote the columns of J. Now since AJ = JA,
we see that

AJ[I] = Ci,1Jl 1] + C1 ,2 J[2] + C1 ,3 J[3

with
c,, = 0, cl,2 - 1, and c,, 3 - 0.

We observe therefore that, while 3 >- 1, c1,3 0 defying the requirements
of (3.8). However, we can show that, for sufficiently small c > 0, a basis
satisfying a somewhat weaker conditions than being preferred can be chosen.

10



DEFINITION 2 Let A be an n >" n minus M-matrix given in the form
(2.1). A nonnegative basisu (), . . ., u) for E(A) is said to be semi-preferred
if it satisfies the requirements of (2.3) and if the following conditions hold:

Au(k) = 'Ck,Ju( j ), k = 1,.,m (3.9)
j=1

where ck,j > 0, k,j = 1,... ,m. Further we have the implication:

k 0j and ck,j > 0 # a1 >- ak. (3.10)

We now have the following corollary to Theorem 1:

COROLLARY 1 Suppose that A is a minus M-matrix given in the form
(2.1). Then for sufficiently small c > 0 a basis can be extracted from the
columns of J given in (3.7) which is semi-preferred.

Proof: From (2.2), the definition of the Z(k)'s in Section 2, and (3.7) we
see that c > 0 sufficiently small can be chosen so that

v(A)-l Z(k)
AJ = E - > 0.

j=l

As before let ar,...,am be the singular vertices in 1?(A). For each j =
1, ... ,m, choose from the aj-th block column of J a column of J, say it
is columi li j of J. Denote the columns of J so chosen by [i],..., J[m].

Sitppose now that ckj, ... ,Ck,m are nonnegative numbers such that

m
AJ['k] = ECk,jJ["J.

j=1

Let q 0 k and suppose that ck,, > 0. Then we can write that

11



0 < (AJ[,k])[aq]

= E2=I Ck,jJ["J][Ceq]

= C. , Z "4(A )- (= Z.l ckj -=o ( ,+f

"v(A)- 1 (Z(")) jl__ _ _

'5.J=0 F"q=l Ck~J +

VZ v ( A ) - I C , " ( Z ( ) )(P 9 ) [a j ] + "Z v ( A ) - I q 1 C ( ( ) [ 'l ° q

-- " --- 0 3q C=+l +j=1 C CJ$+1

= Ck,q + E(c= + Ckj 3=0

Let j E (q - 1) and consider the inner summation sign in the second term
of the expression immediately above. If cej is a vertex in 1Z(A) such that
aq )4 &j, then all summands under this summation are 0 because Z(')O,. = 0
for all s = 0,..., V(A) - 1. On the other hand, if aq >- aj, then from The-
orem 1 we can deduce that the nonzero coefficient of the lowest exponent
in c > 0 is a positive vector for it is a column of a positive submatrix of an
appropriate principal component of A. Hence, for each such j we can choose

> 0 sufficiently small so that ,(A)-I (Z',))t,'jJ[aq, > 0. Overall, we can
choose E > 0 sufficiently small so that the entire second term in the above
expression is nonnegative. As ZC,(o >j 0, (Z(O))[PqJ[aq] > 0, showing, in
turn, that for some s > 1, ZQ)tk > 0. Hence d(aq, ak) # 0 so that aq has
access to ak. This completes the proof. 10

We finally comment that Theorem 1 and Corollary I strengthen the
results of Theorem 1 of Hlartwig, Neumann, and Rose [3] which were briefly
dscribed in the beginning of the section. There the authors showed that
a nonnegative basis for E(A) could be extracted from the columns of J.
Theorem 1 and Corollary 1 above now show that such a basis can be chosen
which possesses a variety of combinatorial properties.
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4 NONNEGATIVE EIGENPROJECTIONS

In this section we shall develop necessary and sufficient conditions for the
eigenprojection on the Perron eigenspace of an n x n nonnegative matrix P
to be, itself, a nonnegative matrix. We shall see that the nonnegativity of
the eigenprojection is tantamount to the existence of certain "sparse" non-
negative bases for the Perron eigenspaces of P and pT, respectively. We
mention that the appearance of the Perron eigenspace of pT as well as that
of P's is of no surprise since ZA _ 0 if and only if ZAT = (ZA)T > 0. Again
it will be convenient to state and prove our results in terms of the associated
minus M-matrix A = P - p(P)I.

To begin with recall that A is in lower triangular Frobenius normal
form with p diagonal blocks. Consider R(A). By Lemma 1, for any vertex

i E 1Z(A), ZA[i] = ZA{i} = ZA[i]. Thus, as generally known, but confirmed
by our Theorem 1,

ZA"i] > 0, if i is a singular vertex in TZ(A),
t0, otherwise.

It follows that the matrix ZA - I is a minus M-matrix in (lower triangular)
Frobenius normal form with q >_ p diagonal blocks. The singular diagonal
blocks of ZA - I are of same size and occur in same positions as the singular
diagonal blocks of A. The nonsingular diagonal blocks of ZA - I, which are
now all 1 x 1, occur at positions which correspond to diagonal entries within
nonsingular diagonal blocks of A. The implications of these facts can be
expressed relative to the reduced graphs of A and ZA - I. For that purpose,
as before, denote by a1 ,..., am the singular vertices of 7(A) and now in-
troduce 01,...,1 3m to denote the singular vertices of 7Z(ZA - I). Then as
subsets of indices from (n), ai = i, i = 1,...,m. Furthermore, as subsets
of indices from (n), every nonsingular vertex of TR(ZA - I) is contained in
some nonsingular vertex of R(A).

Next we find a simple lemma which gives a necessary condition for ZA
to be nonnegative.

LEMMA 3 Let A be an nxn minus M-matrix. Then a necessary condition
for Z = ZA to be nonnegate is ,,a iniZ(A) no nonsingular vertex lies on

the interior of a simple path connecting two singular vertices.
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Proof: Suppose that the statement is false. Then there exist vertices

i,j E S(A) and k . S(A) such that

i k >-j

and such that
d(i,k) = d(k,j) = 1.

But then, by Theorem 1,

Zi,k > 0 and Zkj > 0.

This means, according to the expla.ation preceding the lemma, that in
7Z(Z - I) there is a path of length at least 2, contradicting the fact that Z
is a nonnegative matrix whose Perron root has index 1. 0

We are now ready to state the main result of this section.

THEOREM 2 Let A be an n x n minus M-matrix. Then necessary and
sufficient conditions for Z = ZA to be nonnegative are:

(i) In '1.(A) no nonsingular vertex lies on the interior of a simple path
connecting two singular vertices.

(ii) E(A) and E(AT) have nonnegative column and row combinatorial bases
u(I),... , u(m) and v1),... , v(m), respectively, which, for i E (p) and
j E (m), possess the following properties:

(a) U(1)[i] > 0 = i = aj or i is a nonsingular vertex.

(b) v()[i] > 0 : i = aj or i is a nonsingular vertex.

Proof: We begin by proving the necessity part. Suppose therefore that
Z > 0. Then (i) holds by Lemma 3. Consider now the minus M-matrix
Z-I. Because Z is a projection, we know that v(Z-I) < 1. The Rothblum
index theorem now implies that the length of any simple path in R(Z- I) is
at most 1. Ilence for any singular vertex aj E 7T(Z-I), a vertex i E 7(Z-I)
satisfies that d(i, a1i) > 0 if and only if i = aj or i is a nonsingular vertex.
Thus, by (2.3), E(Z-I) has a nonnegative proper column combinatorial ba-
sis u('),..., u(m) satisfying the requirements in (a) with respect to 7Z(Z - I).
From E(A) = E(Z - I) and from the relation between 7Z(Z - I) and R(A)
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observed above, it now follows that u0),..., u(m) must (also) be a nonneg-
ative proper combinatorial basis for E(A) satisfying the requirements of (a)
with respect to RJ?(A). Next using the fact that ZAT = ZT > 0, we can
follow arguments of a similar spirit to those used in showing (a), to exhibit
that E(AT) has a nonnegative proper row combinatorial basis v0),..., v(m)
satisfying the requirements of (b).

We come now to the proof of the sufficiency of conditions (i) and (ii).
Let u('), ... IU(m) and v0),..., v(m) be nonnegative proper column and row
combinatorial bases for E(A) and E(AT) satisfying, respectively, the re-
quirements of (a) and (b). First note that for any i 5 aj, k, where i E (P)
and j,k E (in), the subvectors u()[i] and v(k)[i] cannot be concurrently
nonzero vectors. For if that were possible, then, by (ii), i is must be a non-
singular vertex such that, in 7Z(A), rk >- i >- aj, which is not compatible
with condition (i). This shows that the sets of vectors {u(1), ... , u(')} and
{v(),..., v("1)} are bi-orthogonal. In particular, we can a priori scale the
vectors in these sets so that they become bi-orthonormal, that is,

(vk)TU( ) = 6k,l, k, I E (m). (4.1)

Define the matrix
mY E U(i)(vUj))T. (4.2)
j=1

Then, as can be readily ascertained using (4.1), Y > 0, y = y2, and the
columnspace of Y equals, precisely, E(A). Moreover, as (vU))T = (v(J))TZ

for all j E (in), we see that Yw = 0 for any geneiralized eigenvector of A cor-
responding to an eigenvalue other than 0. Whence Z = Y. This completes
the proof. 0

Our theorem shows that for ZA to be nonnegative it is necessary that
E(A) and E(AT) have, respectively, nonnegative column and row combi-
natorial bases satisfying its requirements. Therefore, for interest's sake we
provide here an example of a minus M-matrix A such that E(A) has a non-
negative proper column combinatorial basis satisfying conditions (ii)(a) of
the theorem, but E(AT) does not have a nonnegative proper combinato-
rial row basis satisfying conditions (ii)(b) and su, as expected, ZA is not
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nonnegative. Consider therefore

- ( 1 O
A, 1 -1 0 .

0 10

Here v(A1) = 2 and E(Al =span( 1 1 0 )T,(0 0 1)T}, whereas
E(AT) =span{(1 1 0) ,(-1/2 0 1 )T}. A computation now shows
that

( 1/2 1/20 \
ZAI =  1/2 1/20[.

-1/4 1/4 1

We next comment that Theorem 2 also illustrates that the conditions for
a minus M-matrix A to possess a nonnegative Perron eigenprojection are not
purely combinatorial in the sense that two minus M-matrices can have the
same reduced graph, yet one possesses a nonnegative Perron eigenprojection
while the other one does not. To see this contrast A1 above with the matrix

A2= 1 -1 0
1 1 0

Then both A1 and A2 have the same reduced graph, but whereas ZA, is not
nonnegative, we find that

1/2 1/2 0

ZA2 1/2 1/2 0
0 0 1

Additionally we mention that if A is a minus M-matrix for which Z is non-
negative and in 7Z(A) there is a vertex i V S(A) with access to a vertex
aj E S(A), then our characterization in the above theorem of the special
basis which E(A) must possess does not, a fortiori, tell us whether the
i-th subvector of the j-th basis vector, namely, u(J)[i] is zero or not. That
depends on whether 7.,, is zero or not. Consider the following examples:
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-1 1 0 0 0 0
1 -1 0 0 0 0
1 1 -1 1 0 0
1 1 1 -1 0 0

1 1 1 0 -2 1
1 1 0 1 1 -2

and

A4= 1/2 0 0
1 1 -1

Observe that in 7?(A 3), d(3, 1) = 2, and that in 1(A 4), d(3, 1) = 2. However,
a computation shows that

1/2 1/2 0 0 0 0)
1/2 1/2 0 0 0 0

0 0 1/2 1/2 0 0
0 0 1/2 1/2 0 0
0 0 1/2 1/2 0 0
0 0 1/2 1/2 0 0

and

10 10'ZA 4 = (1/ 2 1 0

Thus we see that while (ZA3 )3,1 = 0, (ZA,)3,1 > 0. This means that in the
basis for E(A 3) provided for by Theorem 2, u()[3] = 0, whereas in th. bomis
for E(A4) provided by the theorem, u()[3] > 0.

We finally remark that in the introduction we described the nonnegative
basis for E(A) which exists under the conditions of Theorem 2 as "sparse".
This is because when contrasted with other nonnegative bases which exist
for E(A), such as the strongly combinatorial basis given in (2.3), we see
that, at least, wherever a subvector of a vector in the latter basis is positive
because of an access from a singular class other than the one whose index
equals to the index of the basis vector, the corresponding subvector of the
basis vector ,,h same .dx Provid d under the conditions-of the theorem

is 0.
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5 ASYMPTOTIC BEHAVIOR OF POWERS OF
A NONNEGATIVE MATRIX

In this section we apply our Theorem 1 to obtain a simple proof of Theorem
5.10 of [5] (see also Theorem 9.8 of [12J.) The proof given in [5] depends
on analytical results concerning convergent and summable series. We shall
work with an n x n nonnegative matrix P which we shall assume to be,
without loss of generality, in block lower triangular Frobenius normal form,
viz.,

Al, 0 ... 0

P = [P2,1 P,2 0 (5.1)
pp,l ... ... ep~P

where the diagonal blocks are irreducible or the 1 x 1 null matrix.

We shall use here the terminology and notations of [12, Section 9] with
the exceptions as noted below. We call a vertex i of R(P) a A-vertezif A is an
eigenvalue of Pii. Now let i and j be vertices of 1Z(P). We denote the spec-
tral radius of P{i,j) by s(ij) and we put A = P{i,j} - s(ij)I. The local
distance 6(ij) is defined to be the (singular) distance d(ij) in A. In other
words, 6(ij) is the maximal number of s(i,j)-vertices in any path from i
to j in IZ(P). (Note that 6(i,j) as defined in this paper equals d(i,j)- 1 as
defined in [12] or [5].) For convenience we shall let Q = P{i,j}. For an

eigenvalue A of Q we shall denote by Z,\)(Q), 0 < k < vx(Q) - 1, the k-th
principal component of Q corresponding to A, where vA(Q) is the index of
A as an eigenvalue of Q, that is, its multiplicity in the minimal polynomial.

(Recall, c.f., [9, p.314] that Z(k)(Q) = AkZ(O)(Q), 0 < k < v.\(Q)- 1, where

Z(°)(Q) is the eigenprojection of Q corresponding to A.)

If P is an irreducible nonnegative matrix, the cycle index c(P) of P is
the greatest common divisor (g.c.d.) of the lengths of all simple cycles in the
directed graph of P (which is defined in [12] and many other papers.) It is
well known that c(P) equals the number of eigenvalues of P on the spectral
circle of P. Now suppose again that P is possibly a reducible nonnegative
matrix in Frobenius normal form given in (5.1). Let i and j be vertices in
7Z(P). We now define the quantity g(ij). If s(ij) = 0, we put g(ij) = 1.
Suppose that s(ij) > 0. Let II(ij) be the set of all paths from i to j in
7(P) such that each path contains 6(ij) vertices that are s(i,j)-vertices.
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Then for each path 77 in fl(ij), let g(??) be the g.c.d. of all cycle indices
c(Pk,k), where k ranges over all s(i, j)-vertices of n. In this case we let g(i, j)
be the least common multiple of all g(77) for paths 77 E II(ij). Suppose
s = s(ij) > 0 and put g = g(ij). Define now the smoothing matrix

M(i,j) = P(P),

where p(z) is the polynomial

p(z) = (1 + z/s + ... + (z/s)9- 1)/g. (5.2)

Thus if s = 1, the smoothing matrix M(ij) as defined in this paper equals
M(i,j)/g as defined in [12]. (We take here the opportunity to point out two
misstated definitions in [12]. Definition (9.7) of [12] is incorrect, P there
should be replaced by Pls. Also, the defintion of g(ij) given in [12] has an
omission.)

We first prove the following lemma:

LEMMA 4 Let P be a nonnegative matrix given in (5.1). Let ij E (p)
and let Q = P{i,j}. Suppose that 6 = 8(ij), s = s(ij), and q = g(ij).
Suppose that A = sw E a(Q), where Iwi = 1. Then:

N \(Q) b< s Q

and

(ii) if vA(Q) = ,(Q), then w9 = 1.

Proof: (i) Let ( be a path from i to j in R(P) which contains a maximal

number of A-vertices. Let q and p be, respectively, the number of A-vertices
and s-vertices on C. We shall show that

vA.(Q) < q < p < v8 (Q) =,.

The first of these inequalities is immediate from Theorem (5.9) of [7], see
also [4]. To prove the second inequality, we note that it follows from the
Perron-Frobenius theory applied to the irreducible blocks of Q that every
A-vertex of R(Q) is also an s-vertex since s = p(Q). The third inequality
is immediate, since by definition 6 is the maximal number of s-vertices on
an,,y path from i to j4in (Q). The last eqali ty follows from.m hRothblum

index theorem.
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(ii) By the Perron-Frobenius theory, w is a root of unity, say it is the
k-th root of 1. Since p = q, every s-vertex on C is also a A-vertex. Hence
(by Perron-Frobenius) the cycle index of every vertex on C is a multiple of
k. It follows that the g.c.d. of the cycle indices of every s-vertex on C is a
multiple of k. But, since p = q, we have that C E fl(ij) (which was defined
previously in this section). Hence, by the definition of g, it follows that g is
a multiple of k, and we are done. 0

We are now ready to use the results of Section 3 to re-prove Theorem
5.10 of [5].

THEOREM 3 (Friedland and Schneider [5, Theorem 5.10]) Let P be an
nxn nonnegative matrix in given in (5.1). Let i,j E (p) and let Q = P{i,j).
Set 6 = b(i,j), s = s(i,j), g = g(i,j), and let M = M(i,j). Suppose that i
has access to j in fl(A). Then (Z(6- 1)(Q))jj > 0 and if s > 0, then

( ,1Pm )jj = m (6-sm-5+(Z!6-1)(oij + o(m6-1sm-6+1). (5.3)

Remark: Note that the matrices Q, Z(Q), and N used in the statement
and proof are block matrices with fewer blocks in their bloc:; dimension than
P. We shall retain the block row and column indexing of P. Thus, for
example, Qjj is the upper left hand block of Q and Qii is the lower right

hand block of Q. In particular, (Z!'-')(Q))ij = (Z3V-l)(P))jj.

Proof: By Theorem 1, (Z,-1)(Q))i,j > 0. Suppose that s > 0. We
first assume that s = 1 = p(P). Let N = p(Q), where p(z) is given in (5.2).
By Lemma 1, (A'p') ,1 = (VQm) ,j = (pm(Q))ij, where, since s = 1,

pm(Z) = zmp(z) = (Zm + Zm+l + ... + z 7+7-)/g, n = 0,1, ....

well know (cf. Lancaster and Tismenetski [9, p.31,1]) that

NQm  - ( A )m Zr)(Q). (5.4)
AEa(Q) r=0

p,'(A) = 1 [(7)Am-r+ (M+1)Am+,lr+...+ (m+9--)A r+_-]
r g rrr

(5.5)
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it follows that

Qm  
- Z PM (), Z(r)(Q) + o(1). (5.6)

Aea(Q), IA1=1 r=0

Since by Lemma 4(i), we have that v(Q) _< 6 when JAj = 1, it follows from
(5.5), (5.6), and Lemma 4 that

NQm = (1 + A +-... + g-)m -

AEc(Q), JA1=1 g( - 1)!

(5.7)
Suppose that A E a(Q), IAI = 1, but A 0 1. Then either A9 = 1, in which

case 1 + A + ... + A-1 = 0, or (Z('-')(Q))i,i = 0 by Lemma 4. We now
obtain that

(N "i/=md-, (ZS-1)(Q))iJ -)
(NQm)(,1 + o(n 6 '). (5.8)

To obtain the general case of s > 0 from (5.8), we note that pm(sQ) =

sMp (Q) and that Z6-'(sQ) = s6- Z (6- 1)(Q).

We observe that if s(ij) = 0 for a nonnegative matrix P given by
(5.1), then P{i,j} is strictly lower triangular and hence nilpotent. Thus
(Pm)ij = 0 for sufficiently large m.
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